EE â€“ ELECTRICAL ENGINEERING

ENGINEERING MATHEMATICS

Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors.

Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and

improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series.

Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and

Greenâ€™s theorems.

Differential equations: First order equation (linear and nonlinear), Higher order linear differential

equations with constant coefficients, Method of variation of parameters, Cauchyâ€™s and Eulerâ€™s

equations, Initial and boundary value problems, Partial Differential Equations and variable

separable method.

Complex variables: Analytic functions, Cauchyâ€™s integral theorem and integral formula, Taylorâ€™s

and Laurentâ€™ series, Residue theorem, solution integrals.

Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode

and standard deviation, Random variables, Discrete and continuous distributions, Poisson,

Normal and Binomial distribution, Correlation and regression analysis.

Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods

for differential equations.

Transform Theory: Fourier transform, Laplace transform, Z-transform.

ELECTRICAL ENGINEERING

Electric Circuits and Fields: Network graph, KCL, KVL, node and mesh analysis, transient

response of dc and ac networks; sinusoidal steady-state analysis, resonance, basic filter

concepts; ideal current and voltage sources, Theveninâ€™s, Nortonâ€™s and Superposition and

Maximum Power Transfer theorems, two-port networks, three phase circuits; Gauss Theorem,

electric field and potential due to point, line, plane and spherical charge distributions; Ampereâ€™s

and Biot-Savartâ€™s laws; inductance; dielectrics; capacitance.

Signals and Systems: Representation of continuous and discrete-time signals; shifting and

scaling operations; linear, time-invariant and causal systems; Fourier series representation of

continuous periodic signals; sampling theorem; Fourier, Laplace and Z transforms.

Electrical Machines: Single phase transformer - equivalent circuit, phasor diagram, tests,

regulation and efficiency; three phase transformers - connections, parallel operation; auto-

transformer; energy conversion principles; DC machines - types, windings, generator

characteristics, armature reaction and commutation, starting and speed control of motors; three

phase induction motors - principles, types, performance characteristics, starting and speed

control; single phase induction motors; synchronous machines - performance, regulation and

Page 13

parallel operation of generators, motor starting, characteristics and applications; servo and

stepper motors.

Power Systems: Basic power generation concepts; transmission line models and performance;

cable performance, insulation; corona and radio interference; distribution systems; per-unit

quantities; bus impedance and admittance matrices; load flow; voltage control; power factor

correction; economic operation; symmetrical components; fault analysis; principles of over-

current, differential and distance protection; solid state relays and digital protection; circuit

breakers; system stability concepts, swing curves and equal area criterion; HVDC transmission

and FACTS concepts.

Control Systems: Principles of feedback; transfer function; block diagrams; steady-state errors;

Routh and Niquist techniques; Bode plots; root loci; lag, lead and lead-lag compensation; state

space model; state transition matrix, controllability and observability.

Electrical and Electronic Measurements: Bridges and potentiometers; PMMC, moving iron,

dynamometer and induction type instruments; measurement of voltage, current, power, energy

and power factor; instrument transformers; digital voltmeters and multimeters; phase, time and

frequency measurement; Q-meters; oscilloscopes; potentiometric recorders; error analysis.

Analog and Digital Electronics: Characteristics of diodes, BJT, FET; amplifiers - biasing,

equivalent circuit and frequency response; oscillators and feedback amplifiers; operational

amplifiers - characteristics and applications; simple active filters; VCOs and timers; combinational

and sequential logic circuits; multiplexer; Schmitt trigger; multi-vibrators; sample and hold circuits;

A/D and D/A converters; 8-bit microprocessor basics, architecture, programming and interfacing.

Power Electronics and Drives: Semiconductor power diodes, transistors, thyristors, triacs,

GTOs, MOSFETs and IGBTs - static characteristics and principles of operation; triggering

circuits; phase control rectifiers; bridge converters - fully controlled and half controlled; principles

of choppers and inverters; basis concepts of adjustable speed dc and ac drives.