ECE Syllabus

ECE Syllabus

Postby Administrator » Sat May 26, 2007 1:37 pm

EC – ELECTRONICS AND COMMUNICATION ENGINEERING
ENGINEERING MATHEMATICS
Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors.
Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and
improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series.
Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and
Green’s theorems.
Differential equations: First order equation (linear and nonlinear), Higher order linear differential
equations with constant coefficients, Method of variation of parameters, Cauchy’s and Euler’s
equations, Initial and boundary value problems, Partial Differential Equations and variable
separable method.
Complex variables: Analytic functions, Cauchy’s integral theorem and integral formula, Taylor’s
and Laurent’ series, Residue theorem, solution integrals.
Page 11
Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode
and standard deviation, Random variables, Discrete and continuous distributions, Poisson,
Normal and Binomial distribution, Correlation and regression analysis.
Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods
for differential equations.
Transform Theory: Fourier transform, Laplace transform, Z-transform.
ELECTRONICS AND COMMUNICATION ENGINEERING
Networks: Network graphs: matrices associated with graphs; incidence, fundamental cut set and
fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems:
superposition, Thevenin and Norton’s maximum power transfer, Wye-Delta transformation.
Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations;
time domain analysis of simple RLC circuits, Solution of network equations using Laplace
transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point
and transfer functions. State equations for networks.
Electronic Devices: Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in
silicon: diffusion current, drift current, mobility, and resistivity. Generation and recombination of
carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET,
LED, p-I-n and avalanche photo diode, Basics of LASERs. Device technology: integrated circuits
fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-
tub CMOS process.
Analog Circuits: Small Signal Equivalent circuits of diodes, BJTs, MOSFETs and analog CMOS.
Simple diode circuits, clipping, clamping, rectifier. Biasing and bias stability of transistor and FET
amplifiers. Amplifiers: single-and multi-stage, differential and operational, feedback, and power.
Frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion
for oscillation; single-transistor and op-amp configurations. Function generators and wave-
shaping circuits, 555 Timers. Power supplies.
Digital circuits: Boolean algebra, minimization of Boolean functions; logic gates; digital IC
families (DTL, TTL, ECL, MOS, CMOS). Combinatorial circuits: arithmetic circuits, code
converters, multiplexers, decoders, PROMs and PLAs. Sequential circuits: latches and flip-flops,
counters and shift-registers. Sample and hold circuits, ADCs, DACs. Semiconductor memories.
Microprocessor(8085): architecture, programming, memory and I/O interfacing.
Signals and Systems: Definitions and properties of Laplace transform, continuous-time and
discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, DFT and FFT,
z-transform. Sampling theorem. Linear Time-Invariant (LTI) Systems: definitions and properties;
causality, stability, impulse response, convolution, poles and zeros, parallel and cascade
structure, frequency response, group delay, phase delay. Signal transmission through LTI
systems.
Control Systems: Basic control system components; block diagrammatic description, reduction
of block diagrams. Open loop and closed loop (feedback) systems and stability analysis of these
systems. Signal flow graphs and their use in determining transfer functions of systems; transient
and steady state analysis of LTI control systems and frequency response. Tools and techniques
for LTI control system analysis: root loci, Routh-Hurwitz criterion, Bode and Nyquist plots. Control
system compensators: elements of lead and lag compensation, elements of Proportional-Integral-
Derivative (PID) control. State variable representation and solution of state equation of LTI control
systems.
Communications: Random signals and noise: probability, random variables, probability density
function, autocorrelation, power spectral density. Analog communication systems: amplitude and
angle modulation and demodulation systems, spectral analysis of these operations,
superheterodyne receivers; elements of hardware, realizations of analog communication
systems; signal-to-noise ratio (SNR) calculations for amplitude modulation (AM) and frequency
modulation (FM) for low noise conditions. Fundamentals of information theory and channel
Page 12
capacity theorem. Digital communication systems: pulse code modulation (PCM), differential
pulse code modulation (DPCM), digital modulation schemes: amplitude, phase and frequency
shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and
probability of error calculations for these schemes. Basics of TDMA, FDMA and CDMA and GSM.
Electromagnetics: Elements of vector calculus: divergence and curl; Gauss’ and Stokes’
theorems, Maxwell’s equations: differential and integral forms. Wave equation, Poynting vector.
Plane waves: propagation through various media; reflection and refraction; phase and group
velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation;
Smith chart; impedance matching; S parameters, pulse excitation. Waveguides: modes in
rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Basics of
propagation in dielectric waveguide and optical fibers. Basics of Antennas: Dipole antennas;
radiation pattern; antenna gain.
User avatar
Administrator
Site Admin
 
Posts: 339
Joined: Mon May 21, 2007 1:20 pm

Re: ECE Syllabus

Postby jayasri » Tue Sep 30, 2008 9:30 pm

Administrator wrote:EC – ELECTRONICS AND COMMUNICATION ENGINEERING
ENGINEERING MATHEMATICS
Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors.
Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and
improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series.
Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and
Green’s theorems.
Differential equations: First order equation (linear and nonlinear), Higher order linear differential
equations with constant coefficients, Method of variation of parameters, Cauchy’s and Euler’s
equations, Initial and boundary value problems, Partial Differential Equations and variable
separable method.
Complex variables: Analytic functions, Cauchy’s integral theorem and integral formula, Taylor’s
and Laurent’ series, Residue theorem, solution integrals.
Page 11
Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode
and standard deviation, Random variables, Discrete and continuous distributions, Poisson,
Normal and Binomial distribution, Correlation and regression analysis.
Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods
for differential equations.
Transform Theory: Fourier transform, Laplace transform, Z-transform.
ELECTRONICS AND COMMUNICATION ENGINEERING
Networks: Network graphs: matrices associated with graphs; incidence, fundamental cut set and
fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems:
superposition, Thevenin and Norton’s maximum power transfer, Wye-Delta transformation.
Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations;
time domain analysis of simple RLC circuits, Solution of network equations using Laplace
transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point
and transfer functions. State equations for networks.
Electronic Devices: Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in
silicon: diffusion current, drift current, mobility, and resistivity. Generation and recombination of
carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET,
LED, p-I-n and avalanche photo diode, Basics of LASERs. Device technology: integrated circuits
fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-
tub CMOS process.
Analog Circuits: Small Signal Equivalent circuits of diodes, BJTs, MOSFETs and analog CMOS.
Simple diode circuits, clipping, clamping, rectifier. Biasing and bias stability of transistor and FET
amplifiers. Amplifiers: single-and multi-stage, differential and operational, feedback, and power.
Frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion
for oscillation; single-transistor and op-amp configurations. Function generators and wave-
shaping circuits, 555 Timers. Power supplies.
Digital circuits: Boolean algebra, minimization of Boolean functions; logic gates; digital IC
families (DTL, TTL, ECL, MOS, CMOS). Combinatorial circuits: arithmetic circuits, code
converters, multiplexers, decoders, PROMs and PLAs. Sequential circuits: latches and flip-flops,
counters and shift-registers. Sample and hold circuits, ADCs, DACs. Semiconductor memories.
Microprocessor(8085): architecture, programming, memory and I/O interfacing.
Signals and Systems: Definitions and properties of Laplace transform, continuous-time and
discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, DFT and FFT,
z-transform. Sampling theorem. Linear Time-Invariant (LTI) Systems: definitions and properties;
causality, stability, impulse response, convolution, poles and zeros, parallel and cascade
structure, frequency response, group delay, phase delay. Signal transmission through LTI
systems.
Control Systems: Basic control system components; block diagrammatic description, reduction
of block diagrams. Open loop and closed loop (feedback) systems and stability analysis of these
systems. Signal flow graphs and their use in determining transfer functions of systems; transient
and steady state analysis of LTI control systems and frequency response. Tools and techniques
for LTI control system analysis: root loci, Routh-Hurwitz criterion, Bode and Nyquist plots. Control
system compensators: elements of lead and lag compensation, elements of Proportional-Integral-
Derivative (PID) control. State variable representation and solution of state equation of LTI control
systems.
Communications: Random signals and noise: probability, random variables, probability density
function, autocorrelation, power spectral density. Analog communication systems: amplitude and
angle modulation and demodulation systems, spectral analysis of these operations,
superheterodyne receivers; elements of hardware, realizations of analog communication
systems; signal-to-noise ratio (SNR) calculations for amplitude modulation (AM) and frequency
modulation (FM) for low noise conditions. Fundamentals of information theory and channel
Page 12
capacity theorem. Digital communication systems: pulse code modulation (PCM), differential
pulse code modulation (DPCM), digital modulation schemes: amplitude, phase and frequency
shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and
probability of error calculations for these schemes. Basics of TDMA, FDMA and CDMA and GSM.
Electromagnetics: Elements of vector calculus: divergence and curl; Gauss’ and Stokes’
theorems, Maxwell’s equations: differential and integral forms. Wave equation, Poynting vector.
Plane waves: propagation through various media; reflection and refraction; phase and group
velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation;
Smith chart; impedance matching; S parameters, pulse excitation. Waveguides: modes in
rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Basics of
propagation in dielectric waveguide and optical fibers. Basics of Antennas: Dipole antennas;
radiation pattern; antenna gain.
jayasri
 
Posts: 1
Joined: Tue Sep 30, 2008 9:22 pm
My College/Company:: mic college of techn
Roll Number: 0

Re: ECE Syllabus

Postby electroguy05 » Wed Mar 04, 2009 11:03 am

hey admin .. i would like to know which all book should i have for each topic .. the list of books that i got has almost 30 books .. can u pliz tell me which book would be the best for each subject.. thank you.
electroguy05
 
Posts: 3
Joined: Wed Mar 04, 2009 10:49 am
My College/Company:: Muscat pharmacy
Roll Number: 0

Re: ECE Syllabus

Postby Hasim7770 » Mon Feb 03, 2014 11:34 pm

Sir, can you suggest syllabus for EC for GATE 2015???
Which book should I have to use for clearing a total syllabus??
Hasim7770
 
Posts: 2
Joined: Wed Jan 08, 2014 1:58 pm
My College/Company:: A.R.I.T. Khedbrahma
Roll Number: 11510075

Re: ECE Syllabus

Postby deeptia452 » Thu Apr 27, 2017 12:18 pm

Thank you. The IITs had a typical affirmation prepare for undergrad confirmations, called IIT-JEE, which was supplanted by Joint Entrance Examination Advanced in 2013. To prepare for IIT Jee there are numerous institutes which providing classes to crack entrance exams. Here is a link of IIT jee video lectures for the preparation of exam online.
https://www.iitjeemaster.com/
deeptia452
 
Posts: 1
Joined: Thu Apr 27, 2017 12:01 pm
My College/Company:: Oxzyn Infotech
Roll Number: 12312353


Return to ECE Syllabus

Who is online

Users browsing this forum: No registered users and 1 guest
cron